總編輯圈點(diǎn)|“復(fù)制”腦細(xì)胞控制環(huán)境的能力——神經(jīng)元新計(jì)算模型或產(chǎn)生更強(qiáng)大AI

2024-07-01 00:32:35 來源: 科技日報(bào) 點(diǎn)擊數(shù):

科技日報(bào)記者?張夢然

幾乎所有支持現(xiàn)代人工智能(AI)工具的神經(jīng)網(wǎng)絡(luò)都是基于20世紀(jì)60年代的活體神經(jīng)元計(jì)算模型。但美國西蒙斯基金會(huì)熨斗研究所計(jì)算神經(jīng)科學(xué)中心(CCN)開發(fā)的新模型表明,這種已有數(shù)十年歷史的近似模型,并未捕捉到真實(shí)神經(jīng)元所擁有的所有計(jì)算能力,并且這種較舊的模型可能會(huì)阻礙AI的發(fā)展。研究發(fā)表在新一期《美國國家科學(xué)院院刊》上。


數(shù)字手與人手相互繪制圖畫(藝術(shù)圖)。
圖片來源:西蒙斯基金會(huì)

CCN模型開發(fā)者認(rèn)為,單個(gè)神經(jīng)元對周圍環(huán)境的控制力遠(yuǎn)比以前認(rèn)為的要大。更新后的神經(jīng)元模型最終可能會(huì)產(chǎn)生更強(qiáng)大的人工神經(jīng)網(wǎng)絡(luò),更好地捕捉人類大腦的力量。

“神經(jīng)科學(xué)在過去60年中取得了長足進(jìn)步,我們現(xiàn)在認(rèn)識到,以前的神經(jīng)元模型還很初級?!眻F(tuán)隊(duì)負(fù)責(zé)人德米特里·奇克洛夫斯基表示,真實(shí)神經(jīng)元比這個(gè)過于簡化的模型要復(fù)雜得多,也“聰明”得多。

人工神經(jīng)網(wǎng)絡(luò)旨在模仿人類大腦處理信息和做出決策的方式,但所呈現(xiàn)的方式還很簡單。這些網(wǎng)絡(luò)基于20世紀(jì)60年代的神經(jīng)元模型,由有序的節(jié)點(diǎn)層構(gòu)成。網(wǎng)絡(luò)從接收信息的輸入層節(jié)點(diǎn)開始,然后是處理信息的中間層節(jié)點(diǎn),最后是發(fā)送結(jié)果的輸出層節(jié)點(diǎn)。

通常,只有當(dāng)節(jié)點(diǎn)從上一層節(jié)點(diǎn)接收到的總輸入超過某個(gè)閾值時(shí),它才會(huì)將信息傳遞到下一層。在訓(xùn)練當(dāng)前的人工神經(jīng)網(wǎng)絡(luò)時(shí),信息只能沿一個(gè)方向通過節(jié)點(diǎn),節(jié)點(diǎn)無法影響它們從鏈中較早的節(jié)點(diǎn)接收到的信息。

相比之下,新模型將神經(jīng)元視為微小的“控制器”(指能夠根據(jù)收集到的信息來影響周圍環(huán)境的器件),因?yàn)槿祟惸X細(xì)胞不僅能被動(dòng)地傳遞輸入信息,實(shí)際上它們還可控制其他神經(jīng)元的狀態(tài)。

奇克洛夫斯基認(rèn)為,這種更為現(xiàn)實(shí)的神經(jīng)元控制器模型,可能是提高許多機(jī)器學(xué)習(xí)應(yīng)用性能和效率的重要一步。

總編輯圈點(diǎn):

盡管當(dāng)前AI的成就令人矚目,但仍存在許多問題。譬如給你“看似一本正經(jīng),實(shí)則胡說八道”的答案,又譬如訓(xùn)練它們需要耗費(fèi)大量能源。而所有這些問題,人類大腦在工作時(shí)都可避免。將神經(jīng)元作為控制器的靈感也正源于此。現(xiàn)在,科學(xué)家力圖“復(fù)制”更真實(shí)的神經(jīng)元功能,如果人們能更好地模仿大腦的穩(wěn)定與高效,無疑也可以構(gòu)建出更好的AI。

責(zé)任編輯:常麗君

抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會(huì)影響您正常瀏覽本網(wǎng)頁

您可以進(jìn)行以下操作:

1.將瀏覽器切換回極速模式

2.點(diǎn)擊下面圖標(biāo)升級或更換您的瀏覽器

3.暫不升級,繼續(xù)瀏覽

繼續(xù)瀏覽